Permanent Magnet and Magnetic Particle Clutches and Brakes
Permanent Magnet Clutches and Brakes

Precision Tork units provide constant torque independent of slip speed. They offer excellent overload and jam protection for all drivetrain components and also provide soft starts with zero slip when a preset torque is reached. Precision Tork permanent magnet clutches and brakes do not require maintenance and provide extremely long life.

Magnetic Particle Clutches and Brakes

Warner Electric Precision Tork magnetic particle clutches and brakes are unique because of the wide operating torque range available. Torque to current is almost linear and can be controlled very accurately. The unique features of the magnetic particle clutches and brakes make them ideal for tension control, load simulation, cycling/indexing, and soft starts and stops.

Magnetic Capping Headsets

Warner Electric Precision Tork Magnetic Capping Headsets are 100% interchangeable with many major OEM headsets. Warner Electric headsets feature constant Smooth Torque Technology. They are easy to install and maintain with little adjustment required. The Precision Tork headset has a unique visual scale for setting both application torque & the top load spring.
Fast, precise torque adjustment!

Precision Tork™ clutches and brakes

Precision Tork units provide constant torque independent of slip speed. They offer excellent overload and jam protection for all drivetrain components and also provide soft starts with zero slip when a preset torque is reached. Precision Tork permanent magnet clutches and brakes do not require maintenance and provide extremely long life.

Features and Benefits

Fast, precise torque adjustment
- Torque is set with a large knurled adjustment ring.
- Infinite adjustability between minimum and maximum settings. This allows units to be fine tuned to your unique requirement.
- Easy to read graduations.

Torque is constant with respect to speed
- By using the Precision Tork unit, you can solve almost any torque control problem.
- Torque is extremely consistent and smooth at low, as well as high speeds.

No external control or power source
- Simple to install
- Nothing to monitor
- Unaffected by power interruption or power fluctuation
- Safe to use

Dependable performance
- Smallest possible transition from static to dynamic torque. Virtually eliminates the "stick-slip" phenomenon associated with friction devices.
- Long life. The only wearing parts are the ball bearings.
- Extremely accurate. Precision Tork units out perform all other devices at low RPM.

Versatile mounting: Easy to retrofit
- Clutches are available with hollow bores for mounting on motor shafts or jack shafts.
- Bolt circles allow for fixed mounting, adding a pulley, or stub shaft adapters.
- Brakes are available with solid shaft outputs.

Distributor item
- Off the shelf availability.
- Interchangeable with competitors’ products.

Specials are our business. . .
- Special shaft bores and keyways
- Shaft extensions
- System retrofits
- Metric bores and keyways
- Stainless steel construction
- Fixed torque units
Applications

Unwind tension control
Brake mounted on shaft of unwind spool or bobbin.

Information required:
- Full roll diameter (in.) = 6 in.
- Core diameter (in.) = 4 in.
- Average tension (lbs.) = 4 lbs.
- Velocity (feet per min.) = 100 fpm

How to size:
- Average radius (in.) = \[\frac{6 + 4}{4} = 2.5 \text{ in.} \]
- Torque (lb.in.) = \[\frac{4 \times 2.5}{4} = 10 \text{ lb.in.} \]

Check tension range:
- Max. tension = Torque (lb.in.) x \[\frac{2}{\text{Core dia. (in.)}} = 10 \times \frac{2}{4} = 5 \text{ lbs.} \]
- Min. tension = Torque (lb.in.) x \[\frac{2}{\text{Full roll dia. (in.)}} = 10 \times \frac{2}{6} = 3.3 \text{ lbs.} \]
- Slip watts = \[\frac{\text{Max. tension (lbs.) x velocity (fpm)}}{44.2} = 11.3 \text{ watts} \]

Select Model MC4

Cycling

Bottle capping
Constant torque provided by a hysteresis clutch.

Information required:
- Slip RPM = 500 RPM
- Torque = 8 lb.in.
- % slip time of total cycle time = 25%

How to size:
- *Watts = .0118 x torque (lb.in.) x slip RPM x % slip time = .0118 x 8 x 500 x .25 = 11.8 watts

Select MC4 from the specification chart.
*Note: Consult factory if peak slip watts are extremely high or if duration of slip period is in excess of 1 minute.

Nip roll or pulley tension control

Motor

Information required:
- Pulley or nip roll diameter = 4 in.
- Tension = 6 lbs.
- Velocity = 100 fpm

How to size:
- Torque (lb.in.) = Tension (lbs.) x \[\frac{4}{2} = 12 \text{ lb.in.} \]
- Slip watts = \[\frac{\text{Tension (lbs.) x velocity (fpm)}}{44.2} = 13.5 \text{ watts} \]

Select Model MC5

Overload protection / Torque limiting / Soft start

Motor horsepower method

Information required:
- Motor HP = 1/2 HP
- Motor RPM = 1750 RPM

How to size:
- Torque (lb.in.) = \[\frac{\text{Motor HP x 63000}}{\text{RPM}} = \]
 \[\frac{1/2 \times 63000}{1750} = 18 \text{ lb.in.} \]

Select an MC5 from the specification chart.

Film unwind
Tension provided by hysteresis units.

Film tensioning
Constant tensioning supplied by hysteresis unit.

Film unwind
Tension provided by hysteresis units.

Material handling
Hysteresis clutch can provide overload protection and soft start.
Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Torque (watts)</th>
<th>Heat Dissipation (lbs. sq. in.)</th>
<th>Inertia (lb. in.)</th>
<th>Bending Moment (lb. in.)</th>
<th>Max RPM</th>
<th>Weight (lbs.)</th>
<th>Bore Range/Shaft Dia. (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1.5</td>
<td>1–13 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>10.5 oz.</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>MC2</td>
<td>0.5–22 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11 oz.</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>MC2.5</td>
<td>0.5–5.0 lb. in.</td>
<td>15</td>
<td>0.11</td>
<td>10</td>
<td>1800</td>
<td>1.5</td>
<td>3/8, 1/2</td>
<td></td>
</tr>
<tr>
<td>MC3</td>
<td>0.5–6 lb. in.</td>
<td>18</td>
<td>0.14</td>
<td>10</td>
<td>1800</td>
<td>2.5</td>
<td>5/16, 3/8</td>
<td></td>
</tr>
<tr>
<td>MC4</td>
<td>0.7–10 lb. in.</td>
<td>22</td>
<td>0.32</td>
<td>10</td>
<td>1800</td>
<td>3.5</td>
<td>3/8, 1/2, 5/8</td>
<td></td>
</tr>
<tr>
<td>MC5</td>
<td>1–30 lb. in.</td>
<td>72</td>
<td>1.72</td>
<td>25</td>
<td>1800</td>
<td>9.5</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
<td></td>
</tr>
<tr>
<td>MC6</td>
<td>1–50 lb. in.</td>
<td>110</td>
<td>2.74</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
<td></td>
</tr>
<tr>
<td>MC5.5</td>
<td>1–68 lb. in.</td>
<td>150</td>
<td>4.28</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
<td></td>
</tr>
<tr>
<td>MC6D</td>
<td>6–136 lb. in.</td>
<td>300</td>
<td>8.52</td>
<td>25</td>
<td>1800</td>
<td>24</td>
<td>1/2, 5/8, 3/4, 7/8, 1</td>
<td></td>
</tr>
<tr>
<td>MC9</td>
<td>15–300 lb. in.</td>
<td>345</td>
<td>65.74</td>
<td>50</td>
<td>1200</td>
<td>48</td>
<td>5/8, 3/4, 7/8, 1, 1-1/8, 1-1/4</td>
<td></td>
</tr>
<tr>
<td>MB1</td>
<td>0–1.1 oz. in.</td>
<td>3</td>
<td>0.001</td>
<td>1</td>
<td>3600</td>
<td>2.5 oz.</td>
<td>3/16</td>
<td></td>
</tr>
<tr>
<td>MB1.5</td>
<td>1–13 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11 oz.</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>MB2</td>
<td>.5–22 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11.5 oz.</td>
<td>1/4, 3/8</td>
<td></td>
</tr>
<tr>
<td>MB2.5</td>
<td>.5–5.0 lb. in.</td>
<td>15</td>
<td>0.11</td>
<td>10</td>
<td>1800</td>
<td>2.5</td>
<td>3/8, 1/2</td>
<td></td>
</tr>
<tr>
<td>MB3</td>
<td>0.5–6 lb. in.</td>
<td>18</td>
<td>0.14</td>
<td>10</td>
<td>1800</td>
<td>2</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>MB4</td>
<td>0.7–10 lb. in.</td>
<td>22</td>
<td>0.33</td>
<td>10</td>
<td>1800</td>
<td>3.5</td>
<td>1/2, 5/8</td>
<td></td>
</tr>
<tr>
<td>MB5</td>
<td>1–30 lb. in.</td>
<td>72</td>
<td>1.76</td>
<td>25</td>
<td>1800</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MB5.5</td>
<td>1–50 lb. in.</td>
<td>110</td>
<td>2.79</td>
<td>25</td>
<td>1800</td>
<td>12.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MB6</td>
<td>1–68 lb. in.</td>
<td>150</td>
<td>4.33</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MB6D</td>
<td>6–136 lb. in.</td>
<td>300</td>
<td>8.68</td>
<td>25</td>
<td>1800</td>
<td>26</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>MB9</td>
<td>15–300 lb. in.</td>
<td>345</td>
<td>66.09</td>
<td>50</td>
<td>1200</td>
<td>48</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Hollow Bore Configurations

Solid Shaft Configurations

Typical Mounting Arrangements

Brake:
Typical setup for tensioning wire, film and fibers.

Clutch:
Typical setup for material handling, soft starts and torque limiting.

Clutch Coupling:
Typical setup for torque limiting protection used for labeling, capping and printing applications.
Specifications

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Torque (watts)</th>
<th>Heat Dissipation (lbs. sq. in.)</th>
<th>Inertia (lb. in.)</th>
<th>Bending Moment (lb. in.)</th>
<th>Max RPM</th>
<th>Weight (lbs.)</th>
<th>Bore Range/Shaft Dia. (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1.5</td>
<td>1–13 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>10.5 oz.</td>
<td>1/4</td>
</tr>
<tr>
<td>MC2</td>
<td>0.5–22 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11 oz.</td>
<td>1/4</td>
</tr>
<tr>
<td>MC2.5</td>
<td>0.5–5.5 lb. in.</td>
<td>15</td>
<td>0.11</td>
<td>10</td>
<td>1800</td>
<td>1.5</td>
<td>3/8, 1/2, 5/8</td>
</tr>
<tr>
<td>MC3</td>
<td>0.5–6 lb. in.</td>
<td>18</td>
<td>0.14</td>
<td>10</td>
<td>1800</td>
<td>2.5</td>
<td>5/16, 3/8</td>
</tr>
<tr>
<td>MC4</td>
<td>0.7–10 lb. in.</td>
<td>22</td>
<td>0.32</td>
<td>10</td>
<td>1800</td>
<td>3.5</td>
<td>3/8, 1/2, 5/8</td>
</tr>
<tr>
<td>MC5</td>
<td>1–30 lb. in.</td>
<td>72</td>
<td>1.72</td>
<td>25</td>
<td>1800</td>
<td>9.5</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
</tr>
<tr>
<td>MC5.5</td>
<td>1–50 lb. in.</td>
<td>110</td>
<td>2.74</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
</tr>
<tr>
<td>MC6</td>
<td>1–68 lb. in.</td>
<td>150</td>
<td>4.28</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>3/8, 1/2, 5/8, 3/4, 7/8, 1</td>
</tr>
</tbody>
</table>

* Size 6D NS 9 are not currently available as stainless steel products.

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Torque (watts)</th>
<th>Heat Dissipation (lbs. sq. in.)</th>
<th>Inertia (lb. in.)</th>
<th>Bending Moment (lb. in.)</th>
<th>Max RPM</th>
<th>Weight (lbs.)</th>
<th>Bore Range/Shaft Dia. (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>0.1–1.1 oz. in.</td>
<td>3</td>
<td>0.001</td>
<td>1</td>
<td>3600</td>
<td>2.5 oz.</td>
<td>3/16</td>
</tr>
<tr>
<td>MB1.5</td>
<td>1–13 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11 oz.</td>
<td>1/4</td>
</tr>
<tr>
<td>MB2</td>
<td>0.5–22 oz. in.</td>
<td>10</td>
<td>0.02</td>
<td>5</td>
<td>3600</td>
<td>11.5 oz.</td>
<td>1/4, 3/8</td>
</tr>
<tr>
<td>MB2.5</td>
<td>0.5–5.5 lb. in.</td>
<td>15</td>
<td>0.11</td>
<td>10</td>
<td>1800</td>
<td>2.5</td>
<td>3/8, 1/2, 5/8</td>
</tr>
<tr>
<td>MB3</td>
<td>0.5–6 lb. in.</td>
<td>18</td>
<td>0.14</td>
<td>10</td>
<td>1800</td>
<td>2</td>
<td>3/8</td>
</tr>
<tr>
<td>MB4</td>
<td>0.7–10 lb. in.</td>
<td>22</td>
<td>0.33</td>
<td>10</td>
<td>1800</td>
<td>3.5</td>
<td>1/2, 5/8</td>
</tr>
<tr>
<td>MB5</td>
<td>1–30 lb. in.</td>
<td>72</td>
<td>1.76</td>
<td>25</td>
<td>1800</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>MB5.5</td>
<td>1–50 lb. in.</td>
<td>110</td>
<td>2.79</td>
<td>25</td>
<td>1800</td>
<td>12.5</td>
<td>1</td>
</tr>
<tr>
<td>MB6</td>
<td>1–68 lb. in.</td>
<td>150</td>
<td>4.33</td>
<td>25</td>
<td>1800</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
Stainless steel clutches and brakes for harsh environments

Caustic washdown solutions can cause corrosion and eventual failure in food processing applications such as meat and poultry. That’s why we have introduced a new line of all stainless steel clutches and brakes. These units, featuring 400 series stainless steel bearings, are robust enough to handle the most hostile washdown environments and tough enough to perform 24/7.
Hollow Bore Configurations

*Set screw adjustment

<table>
<thead>
<tr>
<th>Model</th>
<th>Keyseat</th>
<th>Lockdown Method</th>
<th>G (Bore)</th>
<th>H (Pilot-Both Ends)</th>
<th>I (Both Ends)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1.5</td>
<td>None</td>
<td>3/32 Roll Pin</td>
<td>1/4</td>
<td>0.877–0.876 x 0.08 dp</td>
<td>3) 6-32 x 5/16 dp 1.25 B.C.</td>
</tr>
<tr>
<td>MC2</td>
<td>None</td>
<td>3/32 Roll Pin</td>
<td>1/4</td>
<td>0.877–0.876 x 0.08 dp</td>
<td>3) 6-32 x 5/16 dp 1.25 B.C.</td>
</tr>
<tr>
<td>MC2.5</td>
<td>1/8 Key</td>
<td>2) Set Screws</td>
<td>3/8</td>
<td>1.655–1.653 x 0.10 dp</td>
<td>3) 10-32 x 7/16 dp 1.875 B.C.</td>
</tr>
<tr>
<td>MC3</td>
<td>None</td>
<td>2) Set Screws</td>
<td>5/16</td>
<td>1.383/1.381 x .120 dp</td>
<td>3) 10-32 x 7/16 dp 1.875 B.C.</td>
</tr>
<tr>
<td>MC4</td>
<td>1/8 Key</td>
<td>2) Set Screws</td>
<td>1/2</td>
<td>1.854–1.852 x 0.08 dp</td>
<td>3) 10-32 x 7/16 dp 2.375 B.C.</td>
</tr>
<tr>
<td>MC5</td>
<td>3/16 Key</td>
<td>2) Set Screws</td>
<td>5/8</td>
<td>2.441/2.440 x .10 dp</td>
<td>3) 10-32 x 1/2 dp 3.00 B.C.</td>
</tr>
<tr>
<td>MC5.5</td>
<td>3/16 Key</td>
<td>2) Set Screws</td>
<td>3/4</td>
<td>2.441/2.440 x .26 dp</td>
<td>3) 10-32 x 1/2 dp 3.00 B.C. and 3) 5/16–18 x 0.62 dp 3.50 B.C.</td>
</tr>
<tr>
<td>MC6</td>
<td>None</td>
<td>2) Set Screws</td>
<td>3/6</td>
<td>2.441/2.440 x .24 dp</td>
<td>3) 1/4-20 x 5/16 dp 2.875 B.C.</td>
</tr>
<tr>
<td>MC6D</td>
<td>3/16 Key</td>
<td>2) Set Screws</td>
<td>5/8</td>
<td>2.441/2.440 x .24 dp</td>
<td>3) 5/16–18 x 1/2 dp 4.00 B.C.</td>
</tr>
</tbody>
</table>

*Spanner wrench adjustment

<table>
<thead>
<tr>
<th>Model</th>
<th>Drawing</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1.5</td>
<td>A</td>
<td>1.85</td>
<td>1.62</td>
<td>1.38</td>
<td>0.375</td>
<td>0.24</td>
<td>–</td>
</tr>
<tr>
<td>MC2</td>
<td>A</td>
<td>1.85</td>
<td>1.62</td>
<td>1.35</td>
<td>0.375</td>
<td>0.27</td>
<td>–</td>
</tr>
<tr>
<td>MC2.5</td>
<td>A</td>
<td>2.31</td>
<td>2.52</td>
<td>2.23</td>
<td>0.79</td>
<td>0.29</td>
<td>–</td>
</tr>
<tr>
<td>MC3</td>
<td>A</td>
<td>2.74</td>
<td>2.22</td>
<td>1.98</td>
<td>0.590</td>
<td>0.24</td>
<td>–</td>
</tr>
<tr>
<td>MC4</td>
<td>A</td>
<td>3.23</td>
<td>2.27</td>
<td>2.01</td>
<td>0.98</td>
<td>0.26</td>
<td>–</td>
</tr>
<tr>
<td>MC5</td>
<td>A</td>
<td>4.65</td>
<td>3.18</td>
<td>2.64</td>
<td>1.372</td>
<td>0.45</td>
<td>–</td>
</tr>
<tr>
<td>MC5.5</td>
<td>A</td>
<td>5.29</td>
<td>3.21</td>
<td>2.64</td>
<td>1.372</td>
<td>0.57</td>
<td>–</td>
</tr>
<tr>
<td>MC6</td>
<td>B</td>
<td>6.05</td>
<td>3.18</td>
<td>2.02</td>
<td>1.372</td>
<td>0.76</td>
<td>0.18</td>
</tr>
<tr>
<td>MC6D</td>
<td>B</td>
<td>7.15</td>
<td>5.03</td>
<td>4.06</td>
<td>1.378</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>MC9</td>
<td>B</td>
<td>9.40</td>
<td>4.18</td>
<td>3.49</td>
<td>1.77</td>
<td>0.56</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Solid Shaft Configurations

Drawing C

Thumb screw adjustment

Drawing D

Spanner wrench adjustment

TABLE 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Drawing</th>
<th>A</th>
<th>B</th>
<th>C (Shaft)</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>KEY SEAT</th>
<th>H (Pilot-Both Ends)</th>
<th>I (Both Ends)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>C</td>
<td>0.99</td>
<td>1.37</td>
<td>0.86</td>
<td>3/16</td>
<td>0.51</td>
<td>–</td>
<td>0.170 Flat</td>
<td>–</td>
<td>0.300/0.302 x 0.12 dp</td>
<td>3) 4-40 x 1/4 dp 0.610 B.C.</td>
</tr>
<tr>
<td>MB1.5</td>
<td>C</td>
<td>1.85</td>
<td>2.36</td>
<td>1.38</td>
<td>1/4</td>
<td>.98</td>
<td>–</td>
<td>0.230 Flat</td>
<td>–</td>
<td>0.876/0.877 x 0.08 dp</td>
<td>3) 6-32 x 5/16 dp 1.250 B.C.</td>
</tr>
<tr>
<td>MB2</td>
<td>C</td>
<td>1.85</td>
<td>2.36</td>
<td>1.35</td>
<td>1/4</td>
<td>1.01</td>
<td>–</td>
<td>0.230 Flat</td>
<td>–</td>
<td>0.876/0.877 x 0.08 dp</td>
<td>3) 6-32 x 5/16 dp 1.250 B.C.</td>
</tr>
<tr>
<td>MB2.5</td>
<td>C</td>
<td>2.31</td>
<td>3.35</td>
<td>2.23</td>
<td>3/8</td>
<td>1.12</td>
<td>–</td>
<td>0.355 Flat</td>
<td>–</td>
<td>1.653/1.655 x 0.10 dp</td>
<td>3) 10-32 x 7/16 dp 1.875 B.C.</td>
</tr>
<tr>
<td>MB3</td>
<td>C</td>
<td>2.74</td>
<td>3.02</td>
<td>1.98</td>
<td>3/8</td>
<td>1.04</td>
<td>0.04</td>
<td>0.355 Flat</td>
<td>–</td>
<td>1.383/1.381 x 0.12 dp</td>
<td>3) 10-32 x 7/16 dp 1.875 B.C.</td>
</tr>
<tr>
<td>MB4</td>
<td>C</td>
<td>3.23</td>
<td>2.98</td>
<td>2.01</td>
<td>1/2</td>
<td>0.97</td>
<td>0.09</td>
<td>0.430/0.414</td>
<td>0.125</td>
<td>1.852/1.854 x 0.08dp</td>
<td>3) 10-32 x 7/16 dp 2.375 B.C.</td>
</tr>
<tr>
<td>MB5</td>
<td>C</td>
<td>4.65</td>
<td>4.48</td>
<td>2.64</td>
<td>1</td>
<td>1.75</td>
<td>0.12</td>
<td>0.860/0.844</td>
<td>0.250</td>
<td>2.441/2.440 x 0.100 dp</td>
<td>3) 10-32 x 1/2 dp 3.000 B.C.</td>
</tr>
<tr>
<td>MB5.5</td>
<td>C</td>
<td>5.29</td>
<td>4.53</td>
<td>2.65</td>
<td>1</td>
<td>1.88</td>
<td>0.25</td>
<td>0.860/0.844</td>
<td>0.250</td>
<td>2.441/2.440 x 0.26 dp</td>
<td>3) 10-32 x 1/2 dp 3.000 B.C. and</td>
</tr>
<tr>
<td>MB6</td>
<td>D</td>
<td>6.05</td>
<td>4.48</td>
<td>2.02</td>
<td>1</td>
<td>2.06</td>
<td>0.18</td>
<td>0.860/0.844</td>
<td>0.250</td>
<td>2.441/2.440</td>
<td>3) 1/4-20 x 5/16 dp 2.875 B.C.</td>
</tr>
<tr>
<td>MB6D</td>
<td>D</td>
<td>8.55</td>
<td>6.23</td>
<td>4.06</td>
<td>7/8</td>
<td>1.81</td>
<td>0.24</td>
<td>0.771/0.755</td>
<td>0.188</td>
<td>3.250/3.248</td>
<td>3) 5/16-18 x 1/2 dp 4.000 B.C.</td>
</tr>
<tr>
<td>MB9</td>
<td>D</td>
<td>9.40</td>
<td>5.39</td>
<td>3.49</td>
<td>1</td>
<td>1.77</td>
<td>0.13</td>
<td>0.860/0.844</td>
<td>0.250</td>
<td>3.250/3.248</td>
<td>4) 5/16-18 x 1/2 dp 5.875 B.C. and</td>
</tr>
</tbody>
</table>

Optional Mounting Bracket

Note: Mount bracket to fixed end cap – side opposite knurled adjustment ring.

<table>
<thead>
<tr>
<th>Model</th>
<th>Fits Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPB-2B</td>
<td>MB1.5, 2</td>
<td>0.270</td>
<td>1.750</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>2.500</td>
<td>0.755</td>
<td>1.500</td>
<td>3.000</td>
</tr>
<tr>
<td>MPB-15B</td>
<td>MB2.5/MC2.5, 3, 4</td>
<td>0.270</td>
<td>2.500</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>3.500</td>
<td>1.130</td>
<td>2.000</td>
<td>4.000</td>
</tr>
<tr>
<td>MPB-70B</td>
<td>MB5/</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.000</td>
<td>1.630</td>
<td>3.500</td>
<td>6.000</td>
</tr>
<tr>
<td>MPB-120B</td>
<td>MB5.5</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.000</td>
<td>1.630</td>
<td>3.500</td>
<td>6.250</td>
</tr>
<tr>
<td>MPB-240B</td>
<td>MB6</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.500</td>
<td>2.445</td>
<td>4.000</td>
<td>7.500</td>
</tr>
</tbody>
</table>

All dimensions are nominal unless otherwise noted. () denotes (mm)
Heat Dissipation Charts

MB1

MC1.5/ MB1.5

MC2/MB2

MC2.5/MB2.5

MC3/MB3

MC4/MB4

MC5/MB5

MC5.5/MB5.5

MC6/MB6

MC6D/MB6D

MC9/MB9
Torque Setting Charts

MB1

MC2/MB2

MC2.5/MB2.5

MC3/MB3

MC4/MB4

MC5/MB5

MC5.5/MB5.5

MC6/MB6

MC6D/MB6D

MC9/MB9

*Torque values are approximate.
Stub Shaft Adapters

• Utilized when “clutch coupling” configuration is desired.
• Comes complete with attachment hardware and drive key.
• Stub shaft adapters should be used in conjunction with a flexible coupling.
• Material is Stainless Steel

<table>
<thead>
<tr>
<th>Adapter Size</th>
<th>Permanent Magnet Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-3/16</td>
<td>MB1</td>
<td>0.9</td>
<td>0.88</td>
<td>3/16</td>
<td>0.18</td>
<td>Flat</td>
</tr>
<tr>
<td>A2-14</td>
<td>MB1.5/MC1.5/MB2/MC2</td>
<td>1.60</td>
<td>0.78</td>
<td>1/4</td>
<td>0.15</td>
<td>Flat</td>
</tr>
<tr>
<td>A2-58</td>
<td>MB1.5/MC1.5/MB2/MC2</td>
<td>1.60</td>
<td>1.15</td>
<td>5/8</td>
<td>0.15</td>
<td>3/16” Key</td>
</tr>
<tr>
<td>A3-38</td>
<td>MB3/MC3</td>
<td>2.36</td>
<td>1.19</td>
<td>3/8</td>
<td>0.19</td>
<td>Flat</td>
</tr>
<tr>
<td>A4-38</td>
<td>MB4/MC4</td>
<td>2.86</td>
<td>1.19</td>
<td>3/8</td>
<td>0.19</td>
<td>Flat</td>
</tr>
<tr>
<td>A5-1</td>
<td>MB5/MC5/MB5.5/MC5.5</td>
<td>3.45</td>
<td>1.72</td>
<td>1</td>
<td>0.27</td>
<td>1/4” Key</td>
</tr>
<tr>
<td>A5-12</td>
<td>MB5/MC5/MB5.5/MC5.5</td>
<td>3.45</td>
<td>1.47</td>
<td>1/2</td>
<td>0.27</td>
<td>1/8” Key</td>
</tr>
<tr>
<td>A6-34</td>
<td>MB6/MC6</td>
<td>3.40</td>
<td>1.70</td>
<td>3/4</td>
<td>0.35</td>
<td>3/16” Key</td>
</tr>
<tr>
<td>A6D-34</td>
<td>MB6D/MC6D/MB9/MC9</td>
<td>4.65</td>
<td>2.50</td>
<td>3/4</td>
<td>0.50</td>
<td>3/16” Key</td>
</tr>
</tbody>
</table>

*If Solid Shaft Series is used with adapter, thumb screw must be removed and replaced with set screws.

How to Order

1. Torque:
Determine the maximum torque that your application requires. See the application example.

2. Energy Dissipation:
Determine the amount of energy or heat that will be generated during operation. Each clutch or brake is rated for a specific amount of energy, given in units of watts, that it can safely dissipate. Energy calculations for common applications are listed in the applications section.

3. Model Selection:
Select the clutch or brake based on torque and energy requirements. See the specifications under “Heat Dissipation and Torque Setting Charts.”

4. Select Bore Size:
Select the proper bore size for the application. Although many standard bores are available, consult the factory if your bore requirement is not listed.

5. Example:
Torque Requirement – 9 lb.in.
Energy Requirement – 35 watts
Bore Requirement – 5/8 inch
Select Model MC5-58
Magnetic Particle Clutches and Brakes

Accurate torque control with instantaneous engagement!

Warner Electric Precision Tork magnetic particle clutches and brakes are unique because of the wide operating torque range available. Torque to current is almost linear and can be controlled very accurately. The unique features of the magnetic particle clutches and brakes make them ideal for tension control, load simulation, cycling/indexing, and soft starts and stops.

Features and Benefits

- **Torque independent of slip speed**
 Torque is transmitted through magnetic particle chains which are formed by an electromagnetic field. The torque is independent of slip speed, depending only on circuit current, and is infinitely variable from 0 (disengaged) to rated torque.

- **Precise engagement**
 Precision Tork magnetic particle clutches and brakes engage to transmit torque with speed and precision. Response of the particles to the field is virtually instantaneous, providing perfectly controlled, jerk-free engagement.

- **Customer specified engagement**
 Engagement time may be very gradual or extremely fast. The frequency and torque of the engagement/disengagement sequence is limited only by the capabilities of the control circuitry.

- **No wearing parts**
 There are no friction surfaces to grab or wear, and the units are not affected by changes in atmospheric or other environmental conditions.

- **Efficient/Compact design**
 High torque to size ratio and low consumption of electric power.

- **Versatile mounting**
 Convenient bolt circle for easy mounting. Mounting brackets available for all sizes. Brakes are available with solid shafts and through bore. Can be mounted horizontally or vertically to solve virtually any motion control requirement.

- **Distributor Item**
 Off the shelf availability. Interchangeable with industry standard sizes.

Specials are our business

- **Special Shaft Configurations**
 Customer specified shaft configurations for easy machine mounting and retrofitting.

- **Special Torque**
 Maximum torque configurations to meet customer specifications.

- **Special Mounting Configurations**
 Customer specified bolt patterns, special mounting brackets.

- **Metric units**
Operating Principles

The magnetic particle unit consists of four main components: 1) housing; 2) shaft/disc; 3) coil and 4) magnetic powder. The coil is assembled inside the housing. The shaft/disc fits inside the housing/coil assembly with an air gap between the two; the air gap is filled with fine magnetic powder.

Engagement

When DC current is applied to the magnetic particle unit, a magnetic flux (chain) is formed, linking the shaft/disc to the housing. As the current is increased, the magnetic flux becomes stronger, increasing the torque. The magnetic flux creates extremely smooth torque and virtually no "stick-slip".

Disengagement

When DC current is removed the magnetic powder is free to move within the cavity, allowing the input shaft to rotate freely.

Cycling

By turning the current to the coil on and off a cycling effect is achieved.
Selection

Sizing

To properly size magnetic particle clutches or brakes the thermal energy (slip watts) and torque transmitted must be considered. If thermal energy and torque are known for the application select the unit from the charts to the right.

RPM

RPM must be known when calculating thermal energy (slip watts). For load simulation, torque limiting and similar applications, RPM is known. For web handling, the RPM is calculated as follows:

\[
\text{Slip RPM}^* = \frac{12 \times \text{Velocity (feet per min.)}}{\pi \times \text{Full Roll Dia.}^{**} (\text{in.})}
\]

*In rewind applications the motor RPM should be higher (10%) than the fastest spool RPM.

**In applications with the web running over a pulley or in a nip roll application use the pulley diameter as the roll diameter.

Thermal Energy (slip watts)

Tension applications are considered continuous slip applications. When a brake or clutch is slipping, heat is generated. Heat is described in terms of “energy rate” and is a function of speed, inertia, and cycle rate. Heat generated is usually described in terms of thermal energy or slip watts. Starting and stopping applications generate heat when the unit slips during the stopping and starting of the load.

- For continuous slip applications, such as tension control in an unwind or rewind application slip watts are calculated using the following formula:

\[
\text{Slip Watts} = 0.0118 \times \text{Torque (lb.in.)} \times \text{Slip RPM}
\]

- For cycling applications heat is generated intermittently, and is calculated using the following formula:

\[
\text{Watts} = 2.67 \times \text{Inertia (lb.in.2)} \times \left(\frac{\text{RPM}^*}{10,000}\right) \times \text{F} \times \text{Cycle time(s)}
\]

Duty Cycle

The average heat input must be below the clutch or brake’s heat dissipation rating. If the application generates intermittent heat dissipation, use the average speed for the thermal energy (slip watts) calculations.

Quick Selection Charts

![MPB2/MPC2 Chart](image)

![MPB15/MPC15 Chart](image)

![MPB25/MPC25 Chart](image)

![MPB70/MPC70 Chart](image)

![MPB120/MPC120 Chart](image)

![MPB240 Chart](image)

Torque

Tension applications calculate torque as a function of roll radius and tension. Soft/controlled stopping applications calculate torque as a function of inertia, speed and desired time to stop the load. Torque limiting applications calculate torque as the allowable drive through torque. Calculate the torque requirement based on the formulas for the different applications:

- For web handling application, determine the desired tension in the web then calculate the required torque as follows:

\[
\text{Torque (lb.in.)} = \frac{\text{Tension (lbs.)} \times \text{Roll Dia.}^* (\text{in.})}{2}
\]

*Use full roll diameter. In applications with the web running over a pulley or in a nip roll application use the pulley diameter as the roll diameter.

- To calculate torque for soft/controlled stop or cycling applications first determine the inertia (WR2), and apply it to the formula below:

\[
\text{Torque (lb.in.)} = \frac{\text{Inertia (lb.in.2)} \times \text{RPM}^3}{3,690 \times \text{time(s)}}
\]

\[
\text{Inertia (WR2)} = \left(\frac{\text{weight of body} \times \text{(radius of gyration)2}}{4}\right)^\frac{1}{2}
\]

*to calculate for a cylinder about its axis:

Solid cylinder = \(R^2 = 1/2r^2 \)

Hollow cylinder = \(R^2 = 1/2(r_1^2 + r_2^2) \)
Reflected Inertia (rotational)

In mechanical systems it is common for the rotating parts to operate at different speeds. In clutch and brake applications the \(WR^2 \) is calculated for each part operating at different speeds then reduced to and equivalent \(WR^2 \) at the clutch or brake mounting shaft speed. All the rotating parts \(WR^2 \) are added together and treated as a unit.

The formula for determining the equivalent \(WR^2 \) of a rotating part referred to the clutch or brake shaft is as follows:

\[
WR_e^2 = WR^2 \times \left(\frac{N}{N_{cb}} \right)^2
\]

Where:
- \(WR^2 \) = inertia of the rotating part at N (RPM)
- \(N \) = speed (RPM) of the rotating part
- \(N_{cb} \) = speed (RPM) of the clutch or brake shaft

Reflected Inertia (linear)

In complex systems involving both linear and rotating motion, the linearly moving parts can be reduced to the clutch or brake speed by the following equation:

\[
WR_e = W \left(\frac{V}{2 \pi N} \right)
\]

Where:
- \(W \) = Weight of body
- \(V \) = Velocity in feet per minute
- \(N \) = RPM of the clutch or brake shaft

This equation can only be used when the linear speed has a continuous fixed relation to the rotating speed, such as a conveyor driven by a motor.

To determine torque in an overload protection, torque limiting or soft start application use the following equation:

\[
\text{Torque (lb.in.)} = \frac{HP \times 63,000}{RPM}
\]

Tension Value Chart

<table>
<thead>
<tr>
<th>Material</th>
<th>(tn) (lbs.in. of web width)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum foils</td>
<td>0.5 to 1.5 (1.0 aver./mil)</td>
</tr>
<tr>
<td>Cellophanes</td>
<td>0.5 to 1.0/mil</td>
</tr>
<tr>
<td>Acetate</td>
<td>0.5/mil</td>
</tr>
<tr>
<td>Mylar (Polyester)</td>
<td>0.25 to 0.30/mil</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>0.25 to 0.30/mil</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>0.25 to 0.30/mil</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.0/mil</td>
</tr>
<tr>
<td>Saran</td>
<td>0.05 to 0.20 (0.10 aver./mil)</td>
</tr>
<tr>
<td>Vinyl</td>
<td>0.05 to 0.20 (0.10 aver./mil)</td>
</tr>
</tbody>
</table>

Paper and Laminations

\(20\# / R \)	\(32.54 \) gm/m²	0.50 to 1.0
\(40\# / R \)	\(65.08 \) gm/m²	1.0 to 2.0
\(60\# / R \)	\(97.62 \) gm/m²	1.5 to 3.0
\(80\# / R \)	\(130.0 \) gm/m²	2.0 to 4.0

Calculating Web Tension

For sizing brakes on applications in which the applied web tension is unknown, use the following information to determine the approximate tension value.

\[
\text{Torque (lb.in.)} = \frac{HP \times 63,000}{RPM}
\]

Example:

The tension for a twelve inch wide roll of 20# paper stock is unknown. What is the prescribed tension?
Applications

Warner Electric Precision Tork magnetic particle clutches and brakes are the ideal solution for controlling and maintaining torque. If the application is tensioning, load simulation, torque limiting, or soft starts and stops the magnetic particle unit is the preferred torque controlling device.

Typical Applications
- Wire Processing (winding, hooking, cutting)
- Paper/Foil/Film Processing
- Labeling Applications
- Textile Processing
- Material Processing
- Load profile simulation on:
 - Exercise Equipment
 - Flight Simulators
 - Healthcare Equipment
- Life testing on:
 - Motors
 - Gears
 - Pulleys
 - Belts
 - Chains
 - Many other Rotating Devices
- Conveyors
- Bottle Capping

Controlled Acceleration/Deceleration

Controlled soft stop
Particle brakes and the CBC300 control provide soft stopping of large rotating loads. By controlling the input current, the load is decelerated in a controlled manner without torque spikes, shock, or vibration.

Application Example:
Information Required:
- RPM: 1,000
- Time to Stop: 3 seconds
- Inertia*: 400 lb.in.²

*If inertia is not known see page 4 to calculate.

How to Size:
Maximum Torque (lb.in.) = \[
\frac{\text{Inertia (lb.in.}^2\text{)} \times \text{RPM}}{3,690 \times \text{time(s)}}
\]

= \[
\frac{400 \times 1,000}{3,690 \times 3}
\]

= 36 lb-in

Select a brake that exceeds the maximum torque requirements from the Specification Chart – MPB70.

Controlled soft start
Particle clutches and the CBC300 control provide soft controlled acceleration to prevent tipping or shock during start up.

Application Example:
Information Required:
- RPM: 500
- Time to Start: 4 sec.
- Inertia*: 50 lb.in.²

*If inertia is not known see page 4 to calculate.

How to Size:
Maximum Torque (lb.in.) = \[
\frac{\text{Inertia (lb.in.}^2\text{)} \times \text{RPM}}{3,690 \times \text{time(s)}}
\]

= \[
\frac{50 \times 500}{3,690 \times 4}
\]

= 1.7 lb.in.

Select a clutch that exceeds the maximum torque requirements from the Specification Chart – MPC2.
Tensioning
Magnetic Particle clutches and brakes offer smooth controlled torque for tensioning in both the unwind zone and rewind zone. Torque produced from the magnetic particle clutches and brakes is independent of slip speed, offering a distinct advantage over competing technologies. Since torque can be varied infinitely by varying the input current, the magnetic particle clutches and brakes are ideal in an open loop system. To close the loop in the tensioning system, combine the magnetic particle clutch or brake with a Warner® sensor and control, resulting in more precise control of tension.

Unwind stand under load cell control
Particle brakes and load cell controls with precision load cell sensors provide closed loop tension control.

Application Example:
Information Required:
- Full Roll Diameter: 20 inches
- Tension: 5 lbs.
- Velocity: 400 fpm

How to Size:
Maximum Torque (lb.in.) =
\[
\frac{\text{Full roll diameter (in.)} \times \text{Tension (lbs.)}}{2}
\]
\[
= \frac{20 \times 5}{2}
= 100
= 50 \text{ lb.in.}
\]

Slip RPM:
\[
\frac{\text{Velocity (fpm)} \times 12}{\text{Full roll diameter (in.)} \times \pi}
= \frac{400 \times 12}{20 \times \pi}
= 76 \text{ RPM}
\]

Thermal Energy (Slip Watts):
\[
\frac{\text{.0118 \times Torque (lb.in.) \times Slip RPM}}{\text{RPM}}
= \frac{.0118 \times 50 \times 76}{45 \text{ Watts}}
= 99 \text{ Watts}
\]

Select a brake that exceeds the maximum torque and thermal energy requirements from Quick Selection Chart – MPB70.

Rewind stand under dancer control
Particle clutches and the MCS-203 control provide accurate closed loop tension control for rewind applications.

Application Example:
Information Required:
- Core Diameter: 3 inches
- Full Roll Diameter: 9 inches
- Tension: 5 lbs.
- Velocity: 300 fpm
- Input RPM: 500 RPM*

Maximum Torque (lb.in.) =
\[
\frac{\text{Tension (lbs.)} \times \text{Full roll diameter (in.)}}{2}
= \frac{5 \times 9}{2}
= 23 \text{ lb-in}
\]

Core RPM =
\[
\frac{12 \times \text{Velocity (fpm)}}{\pi \times (\text{core diameter})}
= \frac{12 \times 300}{\pi \times 3}
= 382 \text{ RPM}
\]

Full Roll RPM =
\[
\frac{12 \times \text{Velocity (fpm)}}{\pi \times \text{Full Roll Dia.}}
= \frac{12 \times 300}{\pi \times 9}
= 127 \text{ RPM}
\]

Slip RPM = Input RPM – Full Roll RPM
\[
= 500 – 127
= 372.68
\]

Thermal Energy (slip watts) =
\[
\frac{.0118 \times \text{Torque} \times \text{Slip RPM}}{\text{RPM}}
= \frac{.0118 \times 22 \times 373}{99 \text{ watts}}
\]

Select a clutch that exceeds the maximum torque and thermal energy requirements from the Quick Selection Chart – MPC120.

*To maximize tension control and minimize heat generated, select a drive system that will result in an actual input speed as close to, but not less than, 30 RPM greater than the core RPM. In this example, 382 + 30 = 412, would be ideal but 500 RPM was more readily available.
Applications

Torque Limiting/Overload Protection
The magnetic particle clutches and brakes combined with a Warner® CBC control are effective means to providing protection in the case of jam ups. The magnetic particle clutch and the CBC control can provide precise adjustable torque in torque limiting applications.

Application Example
Information Required:
Motor HP: 1 HP
Motor RPM: 700 RPM

How to Size:
Maximum Torque (lb.in.) =
= \frac{\text{HP} \times 63,000}{\text{RPM}}
= \frac{1 \times 63,000}{700}
= 90 \text{ lb.in.}

Select a clutch that exceeds the maximum torque requirements from the Selection Chart – MPC120.

Load Simulation
By combining the magnetic particle brake with a microprocessor control, virtually any load simulation can be obtained. The control is programmed with the profile or condition that is to be simulated. The control then feeds the profile to the magnetic particle brake in terms of input current. The brake reads the input current and provides load torque to simulate the condition.

If the application requires programming load profiles, adjusting load torque, or simulating friction or drag loads, the magnetic particle clutches and brakes are the ideal solution.

Exercise Equipment
Brake models provide a smooth controllable resistance for exercise machines. When integrated with a microprocessor control, programming load profiles is possible.
Optional Mounting Bracket (for mounting MPB Brakes and MPC Clutches)

<table>
<thead>
<tr>
<th>Model</th>
<th>Fits Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPB-2B</td>
<td>2</td>
<td>0.270</td>
<td>1.750</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>2.500</td>
<td>0.755</td>
<td>1.500</td>
<td>3.000</td>
</tr>
<tr>
<td>MPB-15B</td>
<td>15, 25</td>
<td>0.270</td>
<td>2.500</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>3.500</td>
<td>1.13</td>
<td>2.000</td>
<td>4.000</td>
</tr>
<tr>
<td>MPB-70B</td>
<td>70</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.000</td>
<td>1.63</td>
<td>3.500</td>
<td>6.000</td>
</tr>
<tr>
<td>MPB-120B</td>
<td>120</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.000</td>
<td>1.63</td>
<td>3.500</td>
<td>6.250</td>
</tr>
<tr>
<td>MPB-240B</td>
<td>240</td>
<td>0.270</td>
<td>4.875</td>
<td>1.155</td>
<td>0.390</td>
<td>0.280</td>
<td>6.500</td>
<td>2.245</td>
<td>4.000</td>
<td>7.500</td>
</tr>
</tbody>
</table>

All dimensions are nominal unless otherwise noted.
Dimensions and Specifications

Brakes

Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>I (Shaft)</th>
<th>J (Bore)</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPB2-1</td>
<td>2.11</td>
<td>0.750/0.749</td>
<td>2.23</td>
<td>1.15</td>
<td>0.06</td>
<td>0.70</td>
<td>0.87</td>
<td>–</td>
<td>0.2498/0.2492</td>
<td>–</td>
<td>(3) #6-32 x 0.27 on 1.350 BC</td>
</tr>
<tr>
<td>MPB15-1</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>3.05</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>1.35</td>
<td>–</td>
<td>0.3748/0.3742</td>
<td>–</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB15-2</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>2.05</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>0.34</td>
<td>0.18</td>
<td>–</td>
<td>0.375/0.376</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB15-3</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>2.70</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>0.99</td>
<td>–</td>
<td>0.4998/0.4992</td>
<td>–</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB25-1</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>2.05</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>1.35</td>
<td>–</td>
<td>0.3748/0.3742</td>
<td>–</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB25-2</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>2.05</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>0.34</td>
<td>0.18</td>
<td>–</td>
<td>0.375/0.376</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB25-3</td>
<td>2.96</td>
<td>1.125/1.124</td>
<td>2.7</td>
<td>1.46</td>
<td>0.07</td>
<td>0.85</td>
<td>0.99</td>
<td>–</td>
<td>0.4998/0.4992</td>
<td>–</td>
<td>(3) #6-32 x 0.30 on 2.000 BC</td>
</tr>
<tr>
<td>MPB70-1</td>
<td>4.57</td>
<td>1.625/1.624</td>
<td>2.62</td>
<td>1.76</td>
<td>0.10</td>
<td>0.98</td>
<td>0.50</td>
<td>0.18</td>
<td>–</td>
<td>0.500/0.501</td>
<td>(4) #10-32 x 0.50 on 4.228 BC</td>
</tr>
<tr>
<td>MPB70-2</td>
<td>4.57</td>
<td>1.625/1.624</td>
<td>3.37</td>
<td>1.76</td>
<td>0.10</td>
<td>0.98</td>
<td>1.25</td>
<td>–</td>
<td>0.7497/0.7492</td>
<td>–</td>
<td>(4) #10-32 x 0.50 on 4.228 BC</td>
</tr>
<tr>
<td>MPB70-3</td>
<td>4.57</td>
<td>1.651/1.650</td>
<td>3.00</td>
<td>1.76</td>
<td>0.10</td>
<td>1.01</td>
<td>0.85</td>
<td>–</td>
<td>0.6258/0.6252</td>
<td>–</td>
<td>(4) #10-32 x 0.50 on 4.228 BC</td>
</tr>
<tr>
<td>MPB120-1</td>
<td>5.25</td>
<td>1.625/1.624</td>
<td>4.02</td>
<td>2.17</td>
<td>0.10</td>
<td>1.18</td>
<td>1.50</td>
<td>0.50</td>
<td>–</td>
<td>0.500/0.501</td>
<td>(4) #1/4-20 x 0.75 on 4.812 BC</td>
</tr>
<tr>
<td>MPB120-2</td>
<td>5.25</td>
<td>1.625/1.624</td>
<td>4.02</td>
<td>2.17</td>
<td>0.10</td>
<td>1.18</td>
<td>1.50</td>
<td>–</td>
<td>0.7497/0.7492</td>
<td>–</td>
<td>(4) #1/4-20 x 0.75 on 4.812 BC</td>
</tr>
<tr>
<td>MPB120-3</td>
<td>5.25</td>
<td>3.186/3.184</td>
<td>3.30</td>
<td>2.17</td>
<td>0.09</td>
<td>0.95</td>
<td>0.85</td>
<td>–</td>
<td>0.626/0.625</td>
<td>(2) #1/4-20 x 1.07 on 4.850 BC</td>
<td>0.188 Keyhole</td>
</tr>
<tr>
<td>MPB240-1</td>
<td>6.23</td>
<td>2.442/2.440</td>
<td>4.66</td>
<td>2.65</td>
<td>0.10</td>
<td>1.46</td>
<td>1.65</td>
<td>–</td>
<td>0.7497/0.7492</td>
<td>–</td>
<td>(4) #1/4-20 x 0.65 on 5.875 BC</td>
</tr>
<tr>
<td>MPB240-2</td>
<td>6.23</td>
<td>2.442/2.440</td>
<td>3.51</td>
<td>2.65</td>
<td>0.10</td>
<td>1.46</td>
<td>0.50</td>
<td>–</td>
<td>–</td>
<td>0.875/0.876</td>
<td>(4) #1/4-20 x 0.65 on 5.875 BC</td>
</tr>
<tr>
<td>MPB240-3</td>
<td>6.23</td>
<td>2.442/2.440</td>
<td>3.51</td>
<td>2.65</td>
<td>0.10</td>
<td>1.46</td>
<td>0.50</td>
<td>–</td>
<td>–</td>
<td>1.000/1.001</td>
<td>(4) #1/4-20 x 0.65 on 5.875 BC</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MPB2</td>
<td>0.40</td>
<td>2</td>
<td>24</td>
<td>92</td>
<td>0.261</td>
<td>8</td>
<td>4</td>
<td>0.001</td>
<td>10</td>
<td>1.800</td>
<td>1</td>
</tr>
<tr>
<td>MPB2</td>
<td>0.40</td>
<td>2</td>
<td>90</td>
<td>1552</td>
<td>0.058</td>
<td>8</td>
<td>4</td>
<td>0.001</td>
<td>10</td>
<td>1.800</td>
<td>1</td>
</tr>
<tr>
<td>MPB15</td>
<td>0.40</td>
<td>15</td>
<td>24</td>
<td>80</td>
<td>0.302</td>
<td>25</td>
<td>9</td>
<td>0.013</td>
<td>20</td>
<td>1.000</td>
<td>2.5</td>
</tr>
<tr>
<td>MPB15</td>
<td>0.40</td>
<td>15</td>
<td>90</td>
<td>1501</td>
<td>0.060</td>
<td>25</td>
<td>9</td>
<td>0.013</td>
<td>20</td>
<td>1.000</td>
<td>2.5</td>
</tr>
<tr>
<td>MPB25</td>
<td>0.40</td>
<td>25</td>
<td>24</td>
<td>45</td>
<td>0.533</td>
<td>25</td>
<td>9</td>
<td>0.013</td>
<td>20</td>
<td>1.000</td>
<td>2.5</td>
</tr>
<tr>
<td>MPB25</td>
<td>0.40</td>
<td>25</td>
<td>90</td>
<td>430</td>
<td>0.060</td>
<td>25</td>
<td>9</td>
<td>0.013</td>
<td>20</td>
<td>1.000</td>
<td>2.5</td>
</tr>
<tr>
<td>MPB70</td>
<td>1.00</td>
<td>70</td>
<td>24</td>
<td>35</td>
<td>0.677</td>
<td>70</td>
<td>17</td>
<td>0.073</td>
<td>100</td>
<td>1.000</td>
<td>8</td>
</tr>
<tr>
<td>MPB70</td>
<td>1.00</td>
<td>70</td>
<td>90</td>
<td>613</td>
<td>0.147</td>
<td>70</td>
<td>17</td>
<td>0.073</td>
<td>100</td>
<td>1.000</td>
<td>8</td>
</tr>
<tr>
<td>MPB120</td>
<td>2.00</td>
<td>120</td>
<td>24</td>
<td>33</td>
<td>0.742</td>
<td>90</td>
<td>25</td>
<td>0.370</td>
<td>140</td>
<td>1.000</td>
<td>12.5</td>
</tr>
<tr>
<td>MPB120</td>
<td>2.00</td>
<td>120</td>
<td>90</td>
<td>475</td>
<td>0.190</td>
<td>90</td>
<td>25</td>
<td>0.370</td>
<td>140</td>
<td>1.000</td>
<td>12.5</td>
</tr>
<tr>
<td>MPB240</td>
<td>4.00</td>
<td>240</td>
<td>24</td>
<td>19</td>
<td>1.286</td>
<td>150</td>
<td>45</td>
<td>1.311</td>
<td>200</td>
<td>1.000</td>
<td>20.5</td>
</tr>
<tr>
<td>MPB240</td>
<td>4.00</td>
<td>240</td>
<td>90</td>
<td>246</td>
<td>0.366</td>
<td>150</td>
<td>45</td>
<td>1.311</td>
<td>200</td>
<td>1.000</td>
<td>20.5</td>
</tr>
</tbody>
</table>
Adjustable Torque

TCS-200-1 Manual/Analog

The TCS-200-1/-1H single channel controls are selectable voltage or current controlled power supplies designed to power up to a 16-magnet Electro Disc tension brake system, Electromagnetic Particle Brakes, TB Series brakes, or Advanced Technology tension brakes. These controls operate from a switch-selectable power source of 115 or 230 VAC. They can be operated manually from the front panel or remotely via an analog voltage input, a current input, a remote pot, or a roll follower. External inputs are also provided for remote brake Off, Run, and Stop functions, as well as front panel control of these functions.

Features
- Input: 115/230 VAC, 50/60 Hz
- Output: -1, 0–24 VDC adjustable, 4.25 Amps continuous
- 1H, 0–24 VDC adjustable, 5.8 Amps continuous
- Front panel torque adjust
- Front panel brake mode stop switch
- **Modes:** Stop – Brake Full On
 - Run – Normal Operation
 - Off – Brake Off
- Remote brake mode switch (same functions as mentioned above)
- Remote torque adjust
- Roll follower input
- 0–10 VDC analog voltage input
- 4–20mA analog current input

System Control

CBC200/CBC300

The CBC 200 and CBC 300 are Constant Current controls for 90 volt coil clutches and brakes. Both can control a single clutch or brake, or a clutch and brake or two clutches or two brakes. Both operate based on 120 volt AC input. The CBC 200s have one output channel adjustable and one fixed. The CBC 300s have both channels adjustable.

The CBC 200 and CBC 300 provide for potentiometer adjustment on the front of the unit as shown. The CBC 200-1 and CBC 300-1 provides for input from an external 10K ohm, 2 watt potentiometer.

The CBC 200 C1 and CBC 300 C1 are chassis mount versions of the CBC 200-1 and CBC 300-1.

Features
- Input: 115 VAC 50/60 Hz
- Output: Pulse width modulated full wave rectified DC. Constant current, switch selectable ranges designed for 90 volt DC clutches and brakes.
- Circuit Protection: Internal short circuit protection on outputs, but no circuit protection for AC ground faults. Customer supplied 1.5 amps 250 VAC Fast Acting type fuse recommended.
- Status Indicators: “POWER” green LED indicating AC power is applied to the control. “SHORT” red LED indicating that a short circuit condition exists on one or both of the outputs.
- Enclosure: NEMA 1 rated.
- External switching: Mechanical or Electromechanical switching. Customer supplied 1 amp, 125 v minimum rating

Dancer/Remote Analog Control

MCS-203/MCS-204/ MCS-166

The MCS-203 is a basic dancer control that automatically controls web tension through the use of a dancer roll and sensor. It is single channel, but can operate two 24 VDC tension brakes in parallel when using two MCS-166 power supplies.

The MCS-204 is a basic remote analog control that can also be operated manually via a front panel tension adjustment potentiometer. It is also single channel with the possibility of operating two 24 VDC tension brakes in parallel when using two MCS-166 power supplies.

Features
- Input: 115/230 VAC, 50/60 Hz
- Output: 0–24 VDC at 3 Amps max.
- **MCS-203 (only)**
 - Full P-I-D adjustment
 - System gain display
- **MCS-204 (only)**
 - Front panel torque adjustment
 - Remote potentiometer adjustment
 - Roll follower input
 - Remote voltage or current analog signal following
Warner Electric’s unique product design enables longer life for your magnetic headset.

Spring Cover
Keeps lubrication within the unit, extends the life of the top load components.

Stainless Steel Construction, Quad Seal, and Drain Holes
The quad seal helps to protect the bearing from contaminants. The drain holes allow for an exit if any fluids get inside of the unit. These features combined with stainless steel construction enable the units to better withstand harsh environments, including caustic washdowns!

Visual Setting Scale for Setting Top Load Force
Easy to set up. This setting scale provides easy accurate setting of top load force.

Oversized Thrust Bearing
Specifically designed for the bottling industry with an oversized thrust bearing to handle the repeated downward thrust of capping, increasing bearing life compared to a standard radial ball bearing used by competitive models.

This bearing is not incorporated on all models.

Smooth Torque Technology
Eliminates cap over-tightening, reduces variation in removal torque, and provides less shock wear on the system.

Lifetime Sealed Magnets
- Reduced maintenance costs
- Never need to be replaced

Push Button Torque Control
Optional Feature
Quick torque changeover.
Featuring Smooth Torque magnetic technology to provide the most consistent torque control on the market

Warner Electric magnetic headsets feature constant Smooth Torque Technology; differing with most competitor OEM headsets that have two opposing magnets causing pulsating torque. It’s the pounding effect of a pulsating clutch that increases cap tightness during the capping process.

Warner Electric's Smooth Torque Technology enables Warner headsets to provide constant torque. This eliminates over tightened caps, causing a major reduction in variation of removal torque!

Smooth Torque Technology provides less shock on the system compared to pulsating torque headsets, enabling longer life of machine components, especially retention knives.

- 100% Interchangeable with Major OEM Headsets
- Smooth Torque
- Improved Efficiency
- Longer Operating Life and Lower Cost of Ownership
- Lower Operating Costs
- Easy to Set-up & Maintain
- Excellent Service Expertise and Delivery

Warner Electric capping headsets are 100% interchangeable with major OEM models including:

- ALCOA
- ZALKIN
- AROL
- FOWLER
- FOGG
- AMCO
- KRONES
- KHS

Many Warner headsets available off the shelf!

Each data point is a measurement from one sample bottle from competitive headsets running on the same machine.
Rebuild Options

Rebuild Options for Warner Electric Magnetic Headsets

Headset Rebuild Kits: Low cost, easy to rebuild in house!
- Bearing kits and magnet kits in stock

Easy Rebuilds!
- Full rebuild kits available
- No expensive maintenance contracts
- Save time and money by repairing the headsets yourself

Headset Factory Repair Program: Low cost, quick turnaround!
- Ship headsets back to Warner Electric for a full factory rebuild and certification

Other Rebuild Options
- Factory Repair Programs
- Exchange Program
- Ask for details

Headset Exchange Programs: Choose the program that best meets your needs!
- Complete exchange program options available for magnetic headsets
- Multi-year exchange programs enable customers to receive rebuilt Warner headsets at predetermined times during the year in exchange for their used headsets

On site Service Technician Support: Get extra help when you need it!
- On-site service support is available for installation of new Warner headsets, rebuild support of existing Warner headsets, training, etc.
- Our factory-trained and certified service department with over 50 years combined experience can help prevent costly delays and down time of your capping operation
Warner Electric is your Engineered Cap Chuck Solution

- Chucks engineered to fit your cap profile
- Manufactured to be 100% interchangeable with existing OEM chucks
- Manufactured from highly corrosion resistant hardened stainless steel material
- Unique cap chuck pin designed to better grip your cap
- Competitively priced and short lead times
- Experienced in providing quality chucks for new low profile cap applications
- Our extensive design experience has enabled us to engineer our chucks to reduce cocked caps

Fixed Chucks
- Simple design, least amount of wearing parts
- Low maintenance
- Low inertia
- Short lead times

Quick Connect Chucks
- Quick changeover ideal for multiple package sizes or frequent cleaning
- Designed for any OEM headset to meet your application needs

Mechanical Chucks
- Ideal for multiple capsizes, difficult cap grip applications, and smooth caps
- Hardened stainless steel used in key wear areas
- Competitively priced
Our comprehensive product offerings include various types of clutches and brakes, overrunning clutches, engineered bearing assemblies, gearing and gear motors along with linear products, belted drives, couplings and limit switches. With thousands of product solutions available, Altra provides true single source convenience while meeting specific customer requirements. Many major OEMs and end users prefer Altra products as their No. 1 choice for performance and reliability.

ELECTRIC CLUTCHES AND BRAKES
- Inertia Dynamics
- Matrix
- Stromag
- Warner Electric

HEAVY DUTY CLUTCHES AND BRAKES
- Industrial Clutch
- Stromag
- Svendborg Brakes
- Twiflex
- Wichita Clutch

OVERRUNNING CLUTCHES
- Formsprag Clutch
- Marland Clutch
- Stieber

ENGINEERED COUPLINGS AND UNIVERSAL JOINTS
- Ameridrives
- Bibby Turboflex
- Guardian Couplings
- Huco
- Lamiflex Couplings
- Stromag
- TB Wood’s

GEAR DRIVES
- Bauer Gear Motor
- Boston Gear
- Delroyd Worm Gear
- Nuttall Gear

GEAR MOTORS
- Bauer Gear Motor

OTHER PRODUCT SOLUTIONS FROM ALTRA INDUSTRIAL MOTION
- Our comprehensive product offerings include various types of clutches and brakes, overrunning clutches, engineered bearing assemblies, gearing and gear motors along with linear products, belted drives, couplings and limit switches. With thousands of product solutions available, Altra provides true single source convenience while meeting specific customer requirements. Many major OEMs and end users prefer Altra products as their No. 1 choice for performance and reliability.
The Brands of Altra Industrial Motion

Couplings
- Ameridrives - www.ameridrives.com
- Bibby Turboflex - www.bibbyturboflex.com
- Guardian Couplings - www.guardiancouplings.com
- Huco - www.huco.com
- Lami/flex Couplings - www.lamiflexcouplings.com
- Stromag - www.stromag.com
- TB Wood’s - www.tbwoods.com

Geared Cam Limit Switches
- Stromag - www.stromag.com

Electric Clutches & Brakes
- Inertia Dynamics - www.idclutch.com
- Matrix - www.matrix-international.com
- Stromag - www.stromag.com
- Warner Electric - www.warnerelectric.com

Linear Products
- Warner Linear - www.warnelinear.com

Engineered Bearing Assemblies
- Kilian - www.kilianbearings.com

Heavy Duty Clutches & Brakes
- Industrial Clutch - www.indclutch.com
- Twiflex - www.twiflex.com
- Stromag - www.stromag.com
- Svendborg Brakes - www.svendborg-brakes.com
- Wichita Clutch - www.wichitaclutch.com

Belted Drives
- TB Wood’s - www.tbwoods.com

Gearing
- Bauer Gear Motor - www.bauergears.com
- Boston Gear - www.bostongear.com
- Delroyd Worm Gear - www.delroyd.com
- Nuttall Gear - www.nuttallgear.com

Overrunning Clutches
- Formsprag Clutch - www.formsprag.com
- Marland Clutch - www.marland.com
- Steiber - www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company’s terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2018 by Warner Electric LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Warner Electric LLC or one of its affiliated companies.